2D ultrasonic elastography with lateral displacement estimation using statistics.
نویسندگان
چکیده
Ultrasound elastography is the method of obtaining relative stiffness information of biological tissue, which plays an important role in early diagnosis. Generally, a gradient-based strain imaging algorithm assumes that motion only occurs in an axial direction. However, because tissue has different relative stiffness, the scatter presents lateral motion under high freehand compression. Therefore, errors occur in estimating the cross-correlation phase in the calculation window. A 2D elastography algorithm with lateral displacement estimation using statistics was proposed to reduce errors. The new method was investigated through simulation, and the experiment confirmed that errors introduced by lateral tissue movement have been greatly reduced with no sacrifice of real-time ultrasonic imaging quality.
منابع مشابه
Theoretical bounds on the estimation of transverse displacement, transverse strain and Poisson's ratio in elastography.
The Cramér-Rao Lower Bounds (CRLB) are derived for the displacement and strain estimation in directions orthogonal to the ultrasonic beam axis, using a previously-described recorrelation method of axial, lateral and elevational motion estimation. We also compare it to the lateral tracking method that involves the sole use of the axial signal in the transverse direction. Our theoretical results,...
متن کاملUltrasonic imaging of 3D displacement vectors using a simulated 2D array and beamsteering.
Most quasi-static ultrasound elastography methods image only the axial strain, derived from displacements measured in the direction of ultrasound propagation. In other directions, the beam lacks high resolution phase information and displacement estimation is therefore less precise. However, these estimates can be improved by steering the ultrasound beam through multiple angles and combining di...
متن کاملDynamics of errors in 3D motion estimation and implications for strain-tensor imaging in acoustic elastography.
For the purpose of quantifying the noise in acoustic elastography, a displacement covariance matrix is derived analytically for the cross-correlation based 3D motion estimator. Static deformation induced in tissue from an external mechanical source is represented by a second-order strain tensor. A generalized 3D model is introduced for the ultrasonic echo signals. The components of the covarian...
متن کاملThree-Dimensional Motion Estimation in Elastography
In elastography we are capable of estimating the two in-plane principal strain components following an applied compression, namely the axial and lateral components, along and perpendicular the compressor/transducer axis, re pectively. However, the motion resulting from the compression is threedimensional. Therefore, in order to fully describe the resulting three-dimensional motion we need to al...
متن کاملPrecision estimation and imaging of normal and shear components of the 3D strain tensor in elastography.
In elastography we have previously developed a tracking and correction method that estimates the axial and lateral strain components along and perpendicular to the compressor/scanning axis following an externally applied compression. However, the resulting motion is a three-dimensional problem. Therefore, in order to fully describe this motion we need to consider a 3D model and estimate all thr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bio-medical materials and engineering
دوره 24 6 شماره
صفحات -
تاریخ انتشار 2014